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Abstract

A new method for aerosol retrieval over land is proposed that makes explicit use

of the contiguous, high-resolution spectral coverage of imaging spectrometers. The

method is labelled Aerosol Retrieval by Interrelated Abundances (ARIA) and is

based on unmixing of the short-wave infrared sensor signal by region-specific end-

members, assuming low aerosol radiative influence in this spectral region. Derived

endmember abundances are transferred to the visible part of the spectrum in order

to approximate surface reflectance where aerosol influence is generally strongest.

Spectral autocorrelation of surface spectra is a precondition for ARIA and demon-

strated using a reference spectrum database. The re-mixed surface reflectance is

used as input quantity for the inversion of aerosol optical depth τa at 0.55 µm wave-

length on a pixel basis. Except for the choice of endmembers and the atmospheric

vertical profile, no a priori assumptions on the image scene are required. The po-

tential of the presented method for aerosol retrieval is demonstrated for an AVIRIS
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scene, collected in California in 2000. Comparisons with existing aerosol retrieval

methods showed encouraging results in terms of achieved spatial smoothness and

degree of uncertainty of aerosol optical depth across the scene.

Key words: imaging spectroscopy, aerosols, spectrum database, spectral

autocorrelation

1 Introduction

In the Earth’s atmosphere, natural and anthropogenic sources give rise to

highly variable geographical and seasonal aerosol distributions, which are

largely confined to the troposphere. Aerosols affect the atmospheric radia-

tive transfer of sunlight directly due to scattering and absorption of radiation

at particles, and indirectly by influencing the formation of clouds. Owing to

the high spatial variability of aerosols, continuous in situ monitoring from

ground-based instrument networks (e.g., ground-based Sun photometry) is in-

sufficiently representative for both regional and global applications, and calls

for imaging remote sensing techniques. Over both dark water and dark vege-

tation areas on the Earth’s surface, the presence of aerosols generally bright-

ens these pixels at the satellite or aircraft sensor level, which is described by

the aerosol effect ρa. This effect is most often exploited for the retrieval of

aerosol parameters. The aerosol effect is defined by the difference of appar-

ent reflectance at sensor level ρapp, reduced by the apparent reflectance that

would be measured if no aerosol were present for the same measurement situa-
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tion. Apparent reflectance is total upwelling radiance, normalized by the total

downwelling irradiance, both evaluated at the sensor level.

The earliest studies on aerosol remote sensing from satellites used Landsat-

1 data in single VIS bands for mapping dust over the ocean (Fraser, 1976).

Gordon (1978) made first steps in the correction of ocean color measurements

for aerosol influence using two spectral bands over the oceans, and refined

the algorithm for combined ocean colour and aerosol retrieval from SeaWiFS

imagery (Gordon and Wang, 1994). Tanré et al. (1997) used bands in a spec-

tral range between 0.55 and 2.13 µm of the MODIS airborne simulator and

a look-up table approach to derive aerosol properties over the ocean. Unless

models or in situ measurements exist that account for the effects of wind speed

and suspended matter (Gordon and Wang, 1994), water bodies are approxi-

mated to reflect 0− 1 % of the downwelling irradiance above its surface in the

NIR. First studies on the retrieval of aerosol properties from satellite sensor

data over land, which is generally more complex, were aimed at atmospheric

correction (Tanré et al., 1983), but soon focused equally on aerosol mapping

(Kaufman and Sendra, 1988), making use of dark vegetation targets in the

VIS. Dark vegetation is mostly approximated by 2 − 3 % reflectance in the

red VIS (Richter, 1996). In imagery uncorrected for the atmospheric signal,

dark vegetation can be identified by thresholding of the atmospherically resis-

tant vegetation index (ARVI) (Kaufman and Tanré, 1992). With the advent of

space-borne sensors that have the specific capability for aerosol retrieval (e.g.

MODIS), the dark target approach has been refined over land. The method

proposed by Kaufman et al. (1997), hereinafter referred to as “band ratio

method”, is based on an empirical relationship between SWIR reflectance at

λ = 2.1 µm and visible reflectances at λ = 0.49 µm and λ = 0.66 µm for
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a large variety of natural surfaces. It assumes a weak aerosol effect in the

infrared, which holds except for very large dustlike or sea-salt particles. In

contrast to single-view instruments, sensors with multi-angle view capability

have also been used for the retrieval of atmospheric aerosol properties, such

as for ATSR-2 (Veefkind et al., 2000), MISR (Martonchik et al., 1998), and

POLDER (Leroy et al., 1997), but are not further considered in this study.

In recent years, space-borne imaging spectroscopy has become an important

means to characterize aerosols on both global and regional scales (King et al.,

1992; Tanré et al., 1997; Kaufman et al., 2002). Airborne spectral imagers,

such as AVIRIS (Green et al., 1998), with continuous spectral coverage be-

tween 0.4 and 2.5 µm in hundreds of bands, and ground sampling distances

of the order 10 m have also been used for the retrieval of aerosol parame-

ters: Isakov et al. (1996) infer aerosol optical depth from contrast reduction of

uniform artificial land surface targets with high reflectance difference, due to

atmospheric blurring. In turn, imaging spectroscopy of the Earth’s surface, of-

ten requires accurate atmospheric correction of spectral images, and therefore

knowledge of the aerosol radiative effect (Gordon, 1978; Chomko and Gordon,

1998; Gao et al., 2000).

In this paper, a new method for aerosol retrieval over land is proposed that

makes explicit use of the contiguous and high-resolution spectral coverage of

imaging spectrometers. It is based on unmixing of the short-wave infrared

sensor signal by appropriate endmembers, assuming low aerosol radiative in-

fluence in this spectral region. Endmember abundances, that are obtained from

the unmixing process, are then applied to the visible part of the endmembers in

order to approximate surface reflectance in this spectral region where aerosol

influence is generally strongest. The re-mixed surface reflectance is used as in-
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put quantity for numerical inversion of aerosol optical depth. The final goal of

the method consists of mapping regional distributions of aerosol optical depth,

integrated over the atmospheric column. Imagery from the Airborne Visible

Infrared Imaging Spectrometer (AVIRIS) described by Green et al. (1998) is

used as test data. This study focuses on the derivation and description of the

new method. A cross-comparison to existing methods for aerosol retrieval with

optical imaging spectrometers is performed, while absolute validation data for

aerosol optical depth has not been available.

The following terminology is used for spectral wavelength ranges throughout

this paper: visible (VIS) range denotes wavelengths λ between 0.4 and 0.7 µm,

near infrared (NIR) means λ = 0.7−1.0 µm, and short-wave infrared (SWIR)

refers to wavelengths between 1.0 and 2.5 µm. From the SWIR range, the two

wavelength regions between 1.4 and 1.8 µm and 1.8 − 2.5 µm are referred to

as SWIR1 and SWIR2, respectively.

2 New method for aerosol retrieval over land using imaging spec-

troscopy

2.1 Basic principle

A new method for the retrieval of aerosol parameters from imaging spectrome-

ter data over land is proposed. Unlike the dark target and band ratio methods,

which use a small number of spectral bands for the approximation of land sur-

face reflectance ρs in an image pixel, the Aerosol Retrieval by Interrelated

Abundances (ARIA) method is based on unmixing of the spectrally continu-

ous sensor signal in the SWIR range, using the derived abundances to re-mix
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the VIS surface reflectance, and subsequent inversion of aerosol parameters

with look-up tables.

(Insert figure 1 about here)

As illustrated in figure 1, continuous spectral coverage of ρs(VIS) is thus

achieved. Unmixing of the sensor spectrum ρapp in the SWIR (light grey, up-

per panel) uses a priori defined land surface reflectance endmembers ei (lower

panel), assuming a low aerosol effect in the SWIR range. ρapp then reads for

a linear combination of endmembers ei

ρapp(SWIR) =
∑

i

aiei(SWIR) . (1)

Thus obtained abundances ai are interrelated between VIS and SWIR spectral

ranges, if spectral autocorrelation of surface reflectances is given. In this case,

re-mixing of the surface reflectance spectrum ρs(VIS) can be carried out by

applying the abundances ai to the same set of endmembers as employed for

unmixing, such that

ρs(VIS) =
∑

i

aiei(VIS) . (2)

Once ρs(VIS) is obtained, radiative transfer forward modelling with look-up

tables calculated for a variation of aerosol parameters and terrain heights is

performed, and the best fit of ρsim
app to the measured image spectrum ρapp(VIS)

is sought. Figure 2 illustrates this procedure for different modelled columnar

aerosol optical depths τa(0.55µm) for a maritime aerosol model as defined by

Shettle and Fenn (1979). τa(λ) is always evaluated for λ = 0.55 µm in the

following, and henceforth denoted as τa. The best fit curve is determined by
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minimizing the cost function ετa

ετa =
1

n

√√√√ n∑
j=1

(ρsim
app (λj)− ρapp(λj))2 (3)

with n denoting the number of spectral bands.

(Insert figure 2 about here.)

With a minimum ετa , τ best
a is found, which represents the retrieved aerosol

parameter. It depends on approximated surface reflectance ρs(VIS), measured

ρapp at the sensor, and the atmospheric model that is used in the look-up table

forward calculations.

2.2 Implementation of method

(Insert figure 3 about here.)

Based on the described basic principle, the implementation of the ARIA

method is depicted in figure 3.

Step (0): As the spectral image scene over land generally contains variable

topography, orthorectification is performed. A digital terrain model at ap-

proximately the same spatial resolution as the image data is needed for that

purpose.

Step (1): Spectral endmembers can be conceived as the eigenvectors that de-

scribe each pixel spectrum in an image scene without atmospheric disturbances

(for a rigorous definition of the endmember concept, consult e.g. Richards and

Jia (1999)). Unfortunately, this concept is approximative, as real scenes are

not really composed of small number of distinct pure materials, nor are pixel
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spectra exact linear combinations of the spectra of these materials. In this

context, no image-based automated endmember selection algorithm that is

insensitive to atmospheric perturbations could be identified in the literature.

In many studies of land cover analyses using spectral unmixing (Roberts et al.,

1998; Asner and Lobell, 2000), specific spectrum databases are used, that are

adapted to regional conditions. In the proposed method, a reference spectrum

database (Bojinski et al., 2003) provides a set of surface spectra measured in

nadir direction, that fulfil the following conditions: (a) measured in the area

of the image scene in question, and (b) measured in a season comparable to

the time of image acquisition. Significant autocorrelation of the selection of

surface spectra between the VIS and the SWIR wavelength ranges is a precon-

dition (see section 4). Endmember spectra can then be obtained by averaging

the subset of surface spectra being measured on identical or similar land cover

types. It depends on the land cover abundances in the image scene which of

these endmembers are chosen for the following steps. For example, in case of

a predominantly rural image, two endmembers are suggested: vegetation and

soil. It must be noted that spectral shapes that are representative for surface

types in the scene area are required, which are ideally, but not necessarily

measured during overflight. Only surface/object-inherent spectral properties

are required for the method, not the actual ground spectra in absolute re-

flectance units (cf. steps (3) and (4)).

Step (2): With the spectral angle mapper (SAM) algorithm (Richards and Jia,

1999), image pixels are identified that bear sufficient similarity to one of the

used endmember spectra ei, in the sense that a pixel belongs to class c by the
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condition

c =


i : min

(
arccos

(
ρapp,jei,j

|ρapp,j ||ei,j |

))
≤ 0.15

0 : else,

(4)

using the spectral bands j, which were chosen at 0.66, 0.87, 1.04, 1.66, and 2.10

µm. This band selection is small enough to enable fast image classification, and

at the same time roughly covers the spectral range of interest. “0” in equation

(4) denotes “unclassified”. This implies that the pixel spectrum ρapp,j cannot

be properly modelled by the chosen endmembers, probably due to a highly

different surface cover measured in the pixel area. As endmembers were chosen

according to the predominant surface covers in step (1), good coverage of the

image by successfully classified pixels (c not zero) is expected. The SAM is

considered fairly robust towards atmospheric perturbation of the sensor signal,

and therefore the algorithm of choice. As the selection of endmembers is a very

general one in terms of land covers, it is not expected that classified pixels are

purely covered by the respective surface cover. This is important to note for

the following processing step.

Step (3) and (4): In all successfully classified pixels, the SWIR range of the

sensor signal is used for the unmixing procedure, employing the singular value

decomposition technique (Press et al., 1992), and all endmembers used in the

classification process. Even though derived abundances ai do not necessarily

represent actual land cover abundances in the pixel area, they are a measure for

the composition of the SWIR sensor spectrum, as expressed by the selected

endmembers. Significant autocorrelation of natural surface spectra suggests

that the ai be interrelated between SWIR and VIS for certain spectral bands

and accuracy limits. Interrelation means that the ai as derived from the SWIR
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can equally be used in the VIS part of the spectrum for re-mixing, because the

spectral values have shown significant correlation. For unmixing, the use of all

spectral bands in the preliminary range between 1.5 and 2.5 µm is suggested,

provided the atmospheric transmission is larger than 0.85 (for a simulated

maritime aerosol model and τa = 0.22). This constraint prevents absorption

features from atmospheric gases (water vapour, carbon dioxide) affecting the

SWIR spectrum. However,the surface spectra autocorrelation analysis defines

the exact SWIR unmixing range within the preliminary range.

Surface BRDF characteristics are not expected to adversely affect the unmixing/re-

mixing procedure, which is carried out with spectra measured at nadir, pro-

vided that BRDF is independent of wavelength.

The assumption of low aerosol effect (ρa ≤ 0.004) in the SWIR is considered

true for τa ≤ 0.25 in the sense that ρapp(SWIR) can be taken as measured

on the sensor level for unmixing, provided that ρapp(SWIR) < 0.15 (Kaufman

et al., 1997). For τa > 0.25, the aerosol effect on ρapp(SWIR) can no longer be

considered weak in general. In this case, a posteriori correction of the aerosol

effect in the SWIR is needed and a second iteration of the procedure based

on the result from step (8) (described below) is required. In this paper, the

cases where τa > 0.25 are not considered further. Re-mixing of ρs(VIS), as

described in equation (2), is performed in the spectral range between 0.42 and

0.50 µm, where the scattering influence of aerosol is generally strongest (step

(4)).

Step (5): Upward-calculating the approximated ground spectrum in VIS bands

for aerosol parameter variations is carried out numerically by means of pre-

calculated look-up tables. The MODTRAN 4.0 radiative transfer code (Berk

et al., 1989) was used for that purpose, which assumes a spatially uniformly
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layered atmosphere, approximately plane-parallel on a regional scale, with the

following set of parameters (values in parentheses denote incremental steps of

the respective parameters):

• Nadir sensor viewing direction

• Sun zenith, azimuth, day of year, sensor altitude: adapted to test dataset

• Columnar water vapour 1.41 g/cm2 and ozone 7.36 g/cm2

• 15 cm−1 resolution absorption band model

• Variation in terrain height h: adapted to test area terrain variation in 1.0

km increments

• Variation in spectrally uniform ρs: 0.0(0.02)0.2, 0.23, 0.26, 0.3(0.05)0.5

• Variation in horizontal visibility V [km]: 6.0(0.5)10.0, 11.0(1.0)15.0, 17.0,

19.0, 21.0, 23.0 26.0, 30.0, 35.0, 40.0, 45.0, 55.0, 65.0, 80.0, 100.0, 120.0

(corresponds to variation of tau for h=0.0 km: 1.004− 0.076)

• Aerosol models in the boundary layer: maritime, rural, urban (separate

look-up tables)

• Wavelength range: 0.37− 0.80 µm

For the numerical inversion of aerosol optical depth, the look-up table spans

in ρs and τa dimensions, for the urban, rural, and maritime aerosol models.

This choice of parameters has been made according to a study by Tanré et al.

(1997) for look-up table-based aerosol retrieval with the MODIS instrument.

Each combination of ρs, τa, and an aerosol model results in a simulated ρsim
app

at the sensor level (see figure 2).

Step (6): The procedure to find the best fitting simulated at-sensor spectrum

is based on minimizing the cost function in equation (3). If ρapp exceeds the set

of simulated curves in more than one used band, the inversion is cancelled for

this particular pixel. In any other case, for maritime, urban, and rural aerosol
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models, the aerosol optical depth τa for each candidate pixel is obtained.

Step (7): Uncertainty in the retrieved aerosol parameter ∆τa is expressed by

equation (7). Pixels are excluded from further processing if the normalized

uncertainty ∆τa/τa exceeds a threshold value, which is chosen at 0.75. This

value represents a reasonable trade-off between the number of useable pixels

and the accuracy of the ARIA method.

Step (8): The raw aerosol optical depth map is being averaged on a grid with

approximate cell size 200-300 m, considered an appropriate scaling distance

for the variation of aerosols on a local basis in very general terms. Averaging

leads to a spatially more continuous spatial distribution of aerosol optical

depth. Grid areas containing no appropriate pixels are left blank.

2.3 Error calculation

The uncertainty in retrieved aerosol optical depth ∆τa is determined from

estimates of the uncertainties ∆ρs (uncertainty of re-mixed surface reflectance)

and ∆ρapp (uncertainty of sensor measurement). From a correlation analysis

of natural reflectance spectra in the VIS and SWIR ranges, as collected in the

image scene area, ∆ρs(λ) has been determined for each VIS spectral band.

∆ρapp is given by the calibration accuracy of the sensor. Uncertainties are

then calculated as follows: maximum and minimum retrieved aerosol optical

depths τmax
a and τmin

a are obtained as

τmax
a = f(ρs(λ)−∆ρs(λ), ρapp(λ) + ∆ρapp(λ)) , and (5)

τmin
a = f(ρs(λ) + ∆ρs(λ), ρapp(λ)−∆ρapp(λ)) , (6)
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following the described inversion procedure. Equation (5) describes the case

when surface reflectance is underestimated by its uncertainty, with sensor

signal being overestimated to the maximum. In the inversion fitting process,

this combination results in maximum estimated τa. The vice versa combination

in equation (5) analogously leads to τmin
a .

Additionally, an error in inverted aerosol optical depth results from the quality

of the apparent reflectance fit at sensor level, depending on assumed aerosol

optical depth (cf. equation (3)). Here, the minimum deviation ετa can be con-

verted into an uncertainty ∆τ ε
a by a linear interpolation within the set of

apparent reflectance curves (cf. figure 2).

The maximum total uncertainty in τa, ∆τa is then calculated by the discrep-

ancy between τmax
a , τmin

a , and τ best
a , and the addition of ∆τ ε

a:

∆τa =
1

2
(|τmax

a − τ best
a |+ |τmin

a − τ best
a |) + ∆τ ε

a . (7)

τa ±∆τa can be determined for each image pixel that is considered as candi-

date for the ARIA method. A candidate pixel mask is obtained by applying

a spectral angle classifier to the raw image, using above mentioned surface

reflectance endmembers.

3 Imaging spectrometer data

Airborne image data from the AVIRIS onboard a modified U-2 aircraft are

used in this study to test the ARIA method and compare it to existing meth-

ods. An east-west flight line was acquired on 16 September 2000 at 11.00 am

local time, stretching from downtown Los Angeles westward to Point Mugu
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near Oxnard, across a distance of 94.5 km. The north-south extension is 12.3

km, including the shoreline and the Santa Monica Mountains range (see figure

4). AVIRIS scans the surface in 224 spectral bands between 0.37 and 2.51 µm

at a spectral resolution of 10 nm, maximum scan angle 15.6◦ at 20 km altitude

above sea level, and a ground sampling distance of 20 m.

Green and Pavri (2001) state the calibration uncertainty in the AVIRIS 2000

sensor signal as ∆ρapp(λ) = 0.038ρapp(λ) for all bands, evaluated over a bright

target (ρs = 0.5). Bands with centre wavelengths below 0.415 µm are not

recommended for use due to low calibration confidence and high noise level

(Green, pers. comm.). In this study, AVIRIS bands 6− 224 with centre wave-

lengths 0.42− 2.51 µm are considered.

(Insert figure 4 about here.)

The Los Angeles/Point Mugu AVIRIS flightline has been chosen as a useful

testing ground for the ARIA method, because

• it has been acquired with the AVIRIS sensor in the year 2000 calibration

state, with significantly lower noise in the VIS bands than in previous years

(Green and Pavri, 2001),

• it is cloud-free,

• it includes different land cover types and strong topography, where aerosol

retrieval method performances over land can be compared and are expected

to vary.

The Sun geometry was 41◦ Sun zenith angle, and 135◦ Sun azimuth angle.

Hence, the scene is Sun-illuminated from the south-east.

As exemplary test area, the “Topanga” scene has been used throughout the
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analysis, as depicted in figure 4. A USGS digital elevation model with a spatial

resolution of 10 m was necessary for orthorectification of the scene, carried

out with a parametric approach by Schläpfer and Richter (2002). The terrain

model reveals that the “Topanga” scene mainly contains mountainous areas

of the Santa Monica Mountains to the north and west, mostly covered by

chaparral and dry bushlands, with terrain heights varying between 0 and 703

m. Some patches of dark green vegetation could be identified at the valley

bottoms. Bright bare soil can be identified mostly along cross-country roads

and at creek mouths into the sea. Centre, east and south-east of the scene show

urban areas, where brightness is roughly proportional to building density. The

urban sprawl partly extends into hilly areas above the centre of the scene. A

very bright beach before Santa Monica is visible, shoring the Pacific Ocean to

the south-west. The injection of suspended sediments at creek mouths can be

distinguished below the centre of the “Topanga” scene, brightening the mostly

uniform ocean water.

As exemplary subscenes of the “Topanga” dataset, a valley covered almost

entirely by vegetation and soil, not containing built-up areas (“Valley”), as well

as an urban area containing significant amounts of vegetation cover (“Urban”),

have been selected.

For the entire scene, a variety of aerosol types, such as rural, maritime, and

urban, can be expected as predominantly occurring due to the proximity of

respective sources. Therefore, these three aerosol models are used in this study

for the inversion of aerosol optical depth. As a rough estimate, the latter is

expected to vary roughly around 0.20 (cf. Seinfeld and Pandis (1998)) for a

fairly clear day in the Los Angeles area, with possible fluctuations due to ter-

rain elevation and proximity to aerosol sources in the urban Los Angeles area).
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The 0.2 value for τa has also been confirmed from a preliminary atmospheric

correction of the scene using the ATCOR4 program (Richter and Schläpfer,

2002). A uniform horizontal visibility V = 40 km (corresponding to columnar

optical depth 0.20) and maritime and rural aerosol models yielded most ap-

propriate atmospherically corrected ground spectra. Assuming a well-mixed

aerosol in a 2 km thickness boundary layer, resulting in aerosol extinction co-

efficient σe,a = 0.1 km−1, terrain height variations of 700 m as mentioned give

rise to τa variations of around 0.07.

For spectral angle mapping (step (2) of ARIA), band numbers 33, 55, 73,

138, and 183 are used. The SWIR1 and SWIR2 spectral regions correspond

to AVIRIS bands 124− 144 and 182− 204, respectively. The effect of varying

zenith angle of the sensor viewing direction (± 15.6◦) on the sensor signal (due

to increased optical path length) is considered negligible.

4 Autocorrelation analysis of surface spectra

The ARIA method is based on significant autocorrelation of natural surface

spectra in the VIS and SWIR spectral regions. The degree of this autocor-

relation is investigated based on data from a spectrum database that were

measured in the area of the AVIRIS image.

Similar analyses have been carried previously: using low-altitude airborne

spectral image data, a significant correlation between reflectances at 2.1 µm

and reflectances at 0.49 and 0.66 µm, respectively, could be proven empir-

ically (Kaufman et al., 1997) for several natural surface types (vegetation,

soils, sand). Karnieli et al. (2001) showed a significant correlation between
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bands at 0.645 and 1.6 µm for vegetation targets. In this analysis, correlation

is investigated for spectral bands between 0.4 and 0.7 µm in the VIS, and the

SWIR1 and SWIR2 regions, respectively.

A region-specific selection from the spectrum database SPECCHIO (Bojinski

et al., 2003) yielded reflectance spectra from bare soil (35 spectra) and different

vegetation types typical for chaparral (25 spectra). Averaged band correlations

were calculated.

(Insert figure 5 about here.)

The results in figure 5 show panels with Pearson’s correlation coefficient rxy,

pair-wise determined for bands x and y. It represents a measure for the de-

gree of association between the reflectance values in the respective bands.

Considering the size of spectral ensembles and assuming normally distributed

reflectance values, rxy > 0.5 indicates statistically significant correlation (cf.

Press et al. (1992, 636)). Panels (a) in figure 5 display the correlation matri-

ces between VIS and SWIR1, panels (b) the same for VIS and SWIR2. For

the spectral ensemble of soils, rxy above 0.90 is ubiquitous in the VIS/SWIR2

matrix, suggesting very good correlation of spectra. The same panel in the veg-

etation case shows overall less, but still significant correlation at around 0.70,

but with a marked region of low values in the green trough region between

0.50 and 0.55 µm, and above 2.4 µm in the SWIR part. The dip in correlation

in the green is also discernible in the VIS/SWIR1 plot, an overall smoother

picture with correlation coefficients between 0.7 and 0.8. It is probably due

to the strong variability of plant chlorophyll content, which is generally not

reflected in the SWIR spectral range. For soils, correlation is much lower in

the VIS/SWIR1 panel, with values tending to insignificance below 0.50 µm,
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and increasing to about 0.8 for higher VIS wavelengths. From the observed

autocorrelation levels, an unmixing SWIR range between 1.97 and 2.38 µm is

chosen, well-correlated for both soils and vegetation in this spectral selection

with the VIS range between 0.40 and 0.50 µm. In the latter choice of re-mixing

wavelength range, the green trough region is excluded, and at the same time,

a generally high signal at the sensor from atmospheric aerosol scattering is ob-

served. A strong aerosol backscattering signal, again, allows accurate inversion

of aerosol optical depth.

Prior to the correlation analysis, all reflectance spectra were convolved to the

AVIRIS imaging spectrometer band response as of year 2000. Knowing that the

lowest AVIRIS bands show relatively low signal to noise ratios Green and Pavri

(2001), bands below 0.42 µm are not considered in the VIS, rendering the final

VIS re-mixing range to 0.42 - 0.50 µm. Spectral convolution is not expected

to have considerable effect on correlation results, since inherent correlations

exist between nearby wavelengths for natural surface spectra (Price, 1994).

Following the unmixing/re-mixing procedure as defined above, the uncertainty

in aerosol optical depth caused by the inaccuracy of approximated VIS surface

reflectance needs to be assessed. An average relative deviation of 26.7 % (=

∆ρs in equations (5) and (6)) between real VIS spectrum and re-mixed VIS

spectrum could be ascertained, using averaged soil and vegetation spectra

as endmembers, and individual soil and vegetation spectra from the region-

specific selection as test spectra.
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5 Application of methods

5.1 ARIA

Application of the ARIA method after figure 3 is now carried out on the basis

of the “Topanga” AVIRIS scene. ARIA results are compared to the results as

provided by alternative methods for aerosol parameter retrieval. They have

been outlined before: dark vegetation and Kaufman’s band ratio methods.

As mentioned before, unmixing of the sensor signal has been performed in the

SWIR range between 1.97 and 2.38 µm. In the re-mixing process of ρs(VIS),

the SWIR-VIS correlation of surface reflectance analysis suggested the use of

the spectral region between 0.42 and 0.50 µm. Matching of upward-calculated

and sensor spectra worked satisfactorily for maritime and rural aerosol models,

with 78 % of SAM-classified pixels useable for aerosol optical depth retrieval.

Less matching success could be observed for the urban aerosol model, where

only about 60 % of all pre-classified pixels were useable.

5.2 Dark targets

Over land, aerosol parameter inversion was carried out over dark vegetation

(DV) targets, for comparison with the ARIA method. For the identification of

DV, a combination of band thresholds and a vegetation index was used. Since

the normalized difference vegetation index NDVI is not generally applicable

to atmospherically distorted image data, as it is itself affected by aerosols, the

Atmospherically Resistant Vegetation Index (ARVI) as defined by Kaufman

and Tanré (1992) was employed. It is, for a wide range of vegetation types and
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atmophseric conditions, on average four times less sensitive to atmospheric

effects than the NDVI, and defined by

ARVI = (ρ∗(NIR)− ρ∗rb)/(ρ
∗(NIR) + ρ∗rb) (8)

where

ρ∗rb = ρ∗r − γ(ρ∗b − ρ∗r) (9)

with a correction factor γ. The subscripts r and b denote the red and blue

bands, which are positioned at 0.47 µm (AVIRIS band 11) and 0.66 µm (33),

respectively. The NIR band is chosen at 0.87 µm (55). Quantities ρ∗r, ρ∗b , and

ρ∗(NIR) are already corrected for molecular scattering and absorption analo-

gous to the dark water case. As regards the correction factor γ, Huete et al.

(1997) could show a very good correlation of ARVI and NDVI for a globally

representative variation of surface covers with γ = 1. Also over areas with

little green vegetation, the applicability of ARVI with γ = 1 could be proven

(Miura et al., 1998). The latter observation confirms the use of this value for

γ in this study, as partly low vegetation cover can be expected in the Santa

Monica Mountains area in the AVIRIS scene.

According to Kaufman and Tanré (1992), the ARVI threshold is flexibly set

such that 5 % of image pixels are included. From this pixel fraction, the

semi-fraction with lower reflectance in the NIR band is finally selected as

candidate pixels for the dark vegetation method. In the “Topanga” scene,

an ARVI threshold of 0.72 was imposed. Once a DV pixel map is obtained,

ρs(0.66µm) is assumed to be ρmin
s = 0.02, or ρmax

s = 0.03. For both dark target

approaches, the uncertainty in the finally retrieved aerosol parameter τa is
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calculated analogously to the ARIA method, for a single band. The different

assumptions for ρs cause an uncertainty in retrieved aerosol optical depth.

Referring to equations (5) and (6), ), in the dark target case, τmax
a and τmin

a

are defined as follows:

τmax
a = f(ρmin

s , ρapp(λ0) + ∆ρapp(λ0)) and (10)

τmin
a = f(ρmax

s , ρapp(λ0)−∆ρapp(λ0)) , (11)

In the calculation of final aerosol maps, the 0.75 error threshold was used

analogously to the ARIA method.

5.3 Band ratio

The band ratio (BR) method was applied according to Kaufman et al. (1997)

and the MODIS Algorithm Theoretical Basis Document (Kaufman and Tanré,

1998). For the 2.10 µm band (AVIRIS band 183), a maximum ρapp threshold

of 0.05, and a minimum threshold of 0.005 is imposed, provided that at least

5 % of the pixels in the image are covered that way. Otherwise, the ρapp

threshold is increased to 0.1. The minimum threshold should guarantee the

exclusion of water pixels. However, in the AVIRIS scene, several water pixels

with a high content in suspended matter, mostly close to the shoreline, were

erroneously classified as eligible for the band ratio method. For that reason,

the additional condition of minimum 2 m terrain height for classified pixels

had to be imposed.

The 0.05 reflectance threshold in the SWIR could then be successfully applied.

The SWIR/VIS band ratios are applied to approximate the band values at
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0.49 µm (AVIRIS band 13) and 0.66 µm (33) by the factors of 0.25 and 0.5,

respectively. Uncertainties in the retrieved τa were calculated analogously to

the ARIA method for two bands in the VIS. Kaufman et al. (1997) gives an

absolute uncertainty in the reconstructed band reflectance of 0.006, so total

uncertainty in ρs(λ) is here given by

∆ρs(λ) = 0.006 + 0.038ρs(λ) . (12)

In the calculation of final aerosol maps, the 0.75 error threshold was used

analogously to the ARIA method.

6 Results and Discussion

(Insert table 1 about here.)

Aerosol optical depth τa is determined for maritime, rural, and urban aerosol

models, for the DV, BR, and ARIA methods. For comparison of the raw inver-

sion results, the statistics of all commonly selected pixels for all methods on an

intersection mask yielded mean values τa, ∆τa and the spatial standard devia-

tion σ(τa) calculated for the “Topanga” scene, as well as for the “Valley” and

“Urban” subscenes. In the “Topanga” case (table 1), only small relative dif-

ferences between maritime and rural models can be observed in all categories.

This suggests that both models are equally fit to approximate real conditions.

Use of the urban model yields values for all categories that stand considerably

apart. Absolute aerosol optical depth levels as well as uncertainties are clearly

highest, the former exceeding the expected τa of 0.20 by a factor of two.

Maritime and rural results for τa in the BR and DV methods are significantly
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higher than for the ARIA method. In-scene variations of aerosol optical depth

are also lowest for the ARIA method, followed by the other two approaches.

The average uncertainty of the retrieved parameter turns out lowest with the

DV method for all aerosol models, followed at equal level by the ARIA and BR

methods. The uncertainty ∆τ ε
a resulting from the best fit error (cf. equation

7) does not exceed 5 % of the total uncertainty for all methods.

(Insert table 2 about here.)

In the “Valley” subscene of the “Topanga” image (see table 2), aerosol opti-

cal depth parameters closely approximate the respective values for the entire

scene, and the assessment made previously could be confirmed. The ARIA in-

scene variability of τa again is clearly lowest, and the total error approximately

at level with the BR method results. The DV method performs best in terms

of total uncertainty, probably due to the inversion being done in one spectral

band only. The “Urban” subscene evaluation on an intersection mask for all

three methods yielded overall higher τa levels for all methods, as expected for

this part of the scene (table 3). However, use of the urban aerosol model is

not justified even in this subscene, as aerosol optical depth is clearly above

the expected level. Total uncertainties of the DV method approximate those

for the other methods, indicating a weaker performance of this approach over

built-up areas. In-scene variations are again lowest with the ARIA method

compared to BR and DV methods.

(Insert table 3 about here.)

Averaging of the raw inversion results on a 25 by 25 pixel mask leads to

spatial maps of aerosol optical depth according to step (8) of the proposed

ARIA method, and is carried out in the same manner for the BR and DV
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method results. Figure 6 shows the results obtained for a rural aerosol model.

(Insert figure 6 about here.)

A better coverage of the land surface can be discerned for the ARIA method,

compared to the BR and DV cases. The tendency for higher τa levels in the ur-

ban area (easternmost part of map) towards lower values in the mountaineous

parts (central and western areas) can be confirmed for ARIA and BR methods.

ARIA shows smooth aerosol optical depth for the most part of the scene, with

values between 0.14 and 0.20 (blue regions). This is correlated to the existence

of strong topography in these areas, and, for the most part, the absence of

urban areas. Note the green patch in the centre of the scene that stretches in-

ward to the predominantly blue region: it matches fairly well with an outskirt

urban area that extends into a north-south running valley. Isolated patches of

very high τa most likely correspond to spurious pixels that have been classified

as vegetation or soil in the ARIA procedure, but are strongly mixed with other

surface types. Very few pixels are useable in the densely built-up urban area

in the south-eastern corner of the scene, where white patches are frequently

encountered.

The BR result looks in first approximation similar to the ARIA case, i.e. the

distribution of blue and green regions is reproduced. The BR shows stronger

inherent variability in both blue and green areas. Less pixels are used by

this method, as can be noted from scattered white patches across the scene.

Further, more outlying values (red and yellow dots) can be observed, which

are most probably not linked to actual variations in aerosol concentration.

The DV result appears smoother than the corresponding picture for BR, the

blue regions have disappeared, but unexpectedly high τa values (0.45 and
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more) can be observed for large eastern and also central parts of the scene.

Less of a trend in aerosol optical depth between urban and mountaineous

regions is discernible. Figure 7 shows grid-averaged optical depth maps for

the “Valley” subscene, again for a rural aerosol model. The smoother spatial

variability of the ARIA inversion is reflected in the predominant dark blue

shades with relatively few gaps. BR and DV results appear spikier and less

spatially contiguous. Aerosol optical depth maps appear very similar for the

BR and DV methods in the “Urban” subscene, with scattered spikes (red)

and undefined areas (white). These can be explained by poor performance of

these methods in the presence of adjacency effects due to bright objects in the

urban area.

From above results, maritime and rural aerosol models appear equally fit to

describe the actual atmospheric conditions in the “Topanga” scene as well as

in both subscenes, despite their different location and expected characteristics.

Results for the urban model appear not appropriate for atmospheric character-

ization in this case, since they exhibit unexpectly high aerosol optical depths

and very little valid (in terms of uncertainty level) spatial coverage.

(Insert figure 7 about here.) (Insert figure 8 about here.)

A significant part of the variations in the result of the ARIA method is most

probably not due to actual variation of the aerosol regime in the image. Consid-

ering maximum τa variations of 0.07 due to topography, this is clearly exceeded

in the ARIA results, but also in the results for the BR and DV methods. τa ap-

pears conspicuously high (green areas) over mostly urban regions that exhibit

many high VIS albedo objects, such as roofs and bright concrete.
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7 Conclusions

A new method for the retrieval of aerosol parameters over land using imaging

spectrometer data has been presented, representing an extension to existing

methods for aerosol inversion that are based on single (dark target) or double

spectral bands (Kaufman’s band ratio). In comparison to band ratio and dark

target methods, performance of the ARIA method is encouraging in terms of

in-scene smoothness (due to a larger number of pixels used), and comparable

uncertainty level in aerosol optical depth while at the same time using more

spectral information from the image scene. Especially on a local scale, on

the level of subscenes, smoother variation of aerosol optical depth as obtained

with the ARIA method in contrast to band ratio and dark vegetation methods

becomes particularly apparent. The rural and maritime aerosol models both

equally well describe actual aerosol conditions, as derived from this method

comparison. Use of the urban aerosol model mostly yielded unreasonable or

even no results at all in the analyses. Therefore, it is most likely not adequate

for the aerosol regime description in this case study, even for the “Urban”

subscene.

Average uncertainties in the ARIA method for aerosol optical depth are com-

parable to the uncertainties for band ratio and dark target methods. Still,

results are affected by the distribution of visibly bright objects, particularly

in urban regions. Improbably strong variations of τa, that cannot be attributed

to terrain height undulation, and are unlikely to reflect true atmospheric con-

ditions, are observed for all methods. The AVIRIS 2000 test imagery, collected

between downtown Los Angeles and Point Mugu along the coastline, showed

the desired high variation of surface cover, but most probably exhibited a
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rather low overall level of aerosol loading, which rendered aerosol parameter

inversion independent of surface cover a difficult task.

What is the advantage of more accurate surface reflectance ρs(λ) spectral sam-

pling, compared to single or double-band-based methods? The dependence of

(back-)scattered radiation on wavelength by the Ångström law implies that, in

the idealized case of a Junge size distribution and single scattering, two spec-

tral estimates of τa(λ) suffice for the spectral description of τa and therefore

ρa (Liou, 1980). First, the accuracy of approximated ρs(λo) can be improved

by simultaneous knowledge of ρs(λo ± ∆λ) with small ∆λ, given high auto-

correlation of the surface spectrum. This can be relevant if band λo is noisy

or poorly calibrated. Second, the Ångström law is only an approximation to

reality, and higher order λ-dependence of ρa can be of interest.

8 Outlook

Our results confirm that the ARIA concept is a further step toward aerosol

retrieval and atmospheric correction over land on a pixel basis using high

resolution imaging spectroscopy. It shows comparable performance with regard

to traditional single or double-band aerosol retrieval methods. Of particular

value is the fact that the method does not require a priori knowledge, except

for the selection of representative endmember spectra from a region-specific

selection of spectra, most adequately retrieved from a spectrum database.

Until SWIR and VIS high-resolution imaging spectrometer data with global

coverage is commonly available, a contribution to the mapping of regional

distribution of aerosol parameters has been made. Complementary, the results

from this study can be used for regional correction of atmosphere for land cover

27



analyses.

For the validation of ARIA, the application to imaging spectrometry data is

suggested where ground data in form of in situ ground reflectance spectra,

Sun photometer data (Holben et al., 1998), and/or lidar data is available. In

order to circumvent the need for a priori endmember choice from a region-

specific spectral selection, a number of methods for automated endmember

determination has been developed (Tompkins et al., 1997; Winter, 1999). The

algorithm by Plaza et al. (2001) appears particularly suited for AVIRIS data.

Inclusion of automated endmember determination would represent an elegant

extension for the ARIA method, completely removing the need for a priori

assumptions on endmember spectra.

A sensitivity study of the ARIA result with respect to the choice of unmixing

endmembers may further elucidate the mechanisms behind the unmixing/re-

mixing procedure proposed in the ARIA method.

A further step in the inversion process would be the extension of aerosol

parameter retrieval to other physical quantities, such as Ångström coefficient

or single-scattering albedo. This would allow the determination of the aerosol

model also, so far treated separately from the τa inversion. ARIA provides ideal

grounds for that, as good spectral VIS coverage is available for the spectral

approximation of the aerosol effect.
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List of symbols

Symbol Explanation

ρa Aerosol optical effect

ρapp Apparent reflectance at sensor level

ρ∗ Apparent reflectance at sensor, corrected for molecular scattering contributions

ρs Surface reflectance

τa Aerosol optical depth at λ = 0.55 µm

V Horizontal visibility

h Terrain height above sea level

σe,a Aerosol extinction coefficient

rxy Pearson’s correlation coefficient

∆X Absolute error of quantity X
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(SWIR)i iΣ(SWIR) = a e

ρapp

ρapp

ie
Endmember spectra

Sensor spectrum

iaρs(VIS) = Σ a ei i (VIS)

Fig. 1. Principle of ρs(VIS) approximation by the ARIA method. It is based on

spectral unmixing of the sensor spectrum ρapp with appropriate endmembers ei

in the SWIR (light grey), obtaining abundances ai, and subsequent re-mixing

of endmembers (dark grey) in the VIS range. The lower panel depicts mean

soil (solid line) and vegetation spectra (dashed line).



τa

τaSimulated for     =1.00

Simulated for     = 0.07

Measured

Fig. 2. Simulated at-sensor spectra ρsim
app for variation of τa between 0.07 and

1.00 for maritime aerosol type, based on re-mixed ρs(λ), compared to measured

ρapp at sensor. The VIS range 0.42− 0.50 µm is used for parameter inversion.
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Fig. 3. Implementation schema of the ARIA method.
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Fig. 4. Location of the AVIRIS scene in the flight line. The zoom-in shows the

“Topanga”scene for AVIRIS band 20 (0.56 µm). Highlighted are the two sub-

scenes “Valley” and “Urban” with characteristic land covers and topography.
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Fig. 5. Correlation of surface reflectance from vegetation and soil in the Santa

Monica area, taken from a spectrum database.



    DV

    ARIA     BR

Fig. 6. Examples for spatial mapping results of aerosol optical depth after

averaging, using rural aerosol model, for three methods ARIA, band ratio

(BR), and dark vegetation (DV) in the “Topanga” scene. White areas de-

note non-used or out-of-area pixels, or pixels with values that are considered

unrealistically high.



    ARIA     BR

    DV

Fig. 7. Examples for spatial mapping results of aerosol optical depth after

averaging, using rural aerosol model, for three methods ARIA, band ratio

(BR), and dark vegetation (DV) in the “Valley” subscene. White areas de-

note non-used or out-of-area pixels, or pixels with values that are considered

unrealistically high.



    ARIA     BR

    DV

Fig. 8. Examples for spatial mapping results of aerosol optical depth after

averaging, using rural aerosol model, for three methods ARIA, band ratio

(BR), and dark vegetation (DV) in the “Urban” subscene. White areas de-

note non-used or out-of-area pixels, or pixels with values that are considered

unrealistically high.



Method Aerosol τa σ(τa) ∆τa

ARIA m 0.21 0.03 0.09

ARIA r 0.18 0.03 0.09

ARIA u 0.44 0.11 0.29

BR m 0.24 0.06 0.09

BR r 0.23 0.06 0.10

BR u 0.56 0.22 0.32

DV m 0.25 0.06 0.05

DV r 0.26 0.07 0.05

DV u 0.51 0.15 0.08

Table 1

“Topanga” scene aerosol mapping results obtained with ARIA, band ratio

(BR), and dark target methods (DV), using maritime (m), rural (r), and urban

(u) aerosol models, evaluated on an intersection mask.



Method Aerosol τa σ(τa) ∆τa

ARIA m 0.18 0.01 0.10

ARIA r 0.16 0.01 0.09

ARIA u 0.35 0.05 0.27

BR m 0.24 0.05 0.10

BR r 0.23 0.05 0.10

BR u 0.54 0.20 0.35

DV m 0.25 0.07 0.06

DV r 0.26 0.07 0.06

DV u 0.49 0.17 0.07

Table 2

“Valley” subscene aerosol mapping results obtained with ARIA, band ratio

(BR), and dark target methods (DV), using maritime (m), rural (r), and urban

(u) aerosol models, evaluated on an intersection mask.



Method Aerosol τa σ(τa) ∆τa

ARIA m 0.24 0.03 0.10

ARIA r 0.22 0.03 0.09

ARIA u 0.54 0.10 0.30

BR m 0.28 0.06 0.10

BR r 0.27 0.06 0.11

BR u 0.71 0.24 0.37

DV m 0.28 0.08 0.08

DV r 0.29 0.08 0.08

DV u 0.52 0.15 0.08

Table 3

“Urban” subscene aerosol mapping results obtained with ARIA, band ratio

(BR), and dark target methods (DV), using maritime (m), rural (r), and urban

(u) aerosol models, evaluated on an intersection mask.
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SCHLÄPFER, D. and RICHTER, R. (2002). Geo-atmospheric processing of

airborne imaging spectrometry data. Part 1: parametric orthorectification.

International Journal of Remote Sensing, 23(13), 2609–2630.

SEINFELD, J. and PANDIS, S. (1998). Atmospheric Chemistry and Physics.

Wiley, New York, New York, USA, 1326 pp.

SHETTLE, E. and FENN, R. (1979). Models for the aerosols of the lower

atmosphere and the effects of humidity variations on their optical proper-



ties. Technical Report AFGL-TR-79-0214, Air Force Geophysics Labora-

tory, Hanscom AFB, Massachusetts, USA, 94 pp.
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