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Abstract

A critical step in the product generation of satellite or airborne earth observation data is the correction of atmospheric
features. Due to the complexity of the underlying physical model and the amount of coordinated effort required to provide,
verify and maintain baseline atmospheric observations, one particular scientific modelling program, MODTRAN, whose
ancestor was first released in 1972, has become a de facto basis for such processing. While this provides the basis of
per-pixel physical modelling, higher-level algorithms, which rely on the output of potentially thousands of runs of mop-
TRAN are required for the processing of an entire scene. The widely-used ATcor family of atmospheric correction software
employs the commonly-used strategy of pre-computing a large look up table (LuT) of values, representing MODTRAN input
parameter variation in multiple dimensions, to allow for reasonable running times in operation. The computation of this
pre-computed look up table has previously taken weeks to produce a pvbd (about 4 GB) of output. The motivation for
quicker turnaround was introduced when researchers at multiple institutions began collaboration on extending ATCOR fea-
tures into more specialized applications. In this setting, a parallel implementation is investigated with the primary goals of:
the parallel execution of multiple instances of MODTRAN as opaque third-party software, the consistency of numeric results
in a heterogeneous compute environment, the potential to make use of otherwise idle computing resources available to
researchers located at multiple institutions, and acceptable total turnaround time. In both grid and cluster environments,
parallel generation of a numerically consistent LUT is shown to be possible and reduce ten days of computation time on a
single, high-end processor to under two days of processing time with as little as eight commodity CPUs. Runs on up to 64
processors are investigated and the advantages and disadvantages of clusters and grids are briefly explored in reference to
the their evaluation in a medium-sized collaborative project.
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1. Introduction

The ancestor of the MODTRAN line of atmospheric modelling software was first released in 1972, based on band
models developed in the 1950’s and 1960’s used to describe atmospheric transmission and absorption behaviour
[1]. Over time, not only has the software has been continuously updated [2,3], but also the underlying molecular
spectroscopic database [4]. Although competing models also exist, MODTRAN has become established as a de facto
standard in fields related to atmospheric physics and remote sensing. While many applications employing MoD-
TRAN have usage patterns that require only tens of executions, others require hundreds or thousands. Examples of
this usage include sensitivity studies [5,6], and the radiometric and spectral calibration of imaging spectrometers
using known characteristics of solar and atmospheric absorption features [7-9].

When MODTRAN became more widely-used in operational, remotely sensed spectroscopy, invasive modifica-
tions of the typically end-user-compiled Fortran source code were developed by a group of users in order to
introduce single-run parallelism, which resulted in efficient and scalable speedups [10]. For whatever reason,
these code modifications were not officially incorporated into the standard MODTRAN release, which has grown
to over 80,000 lines of code. The code base has moved on, producing multiple releases since then, and these
parallel modifications have effectively been lost to the wider scientific community.

Meanwhile, further standard applications, including atmospheric correction software such as employed by
ISDAS [11] and the widely-disseminated ATcor family of software [12,13] were being built using MODTRAN cal-
culations as the basis of their own algorithms. Atmospheric correction of multispectral/hyperspectral imagery
involve calculations that depend on a number of varying MobTRAN-modifiable parameters defining atmo-
spheric conditions (e.g., molecular absorber concentrations, aerosol scattering, optical depth) as well as obser-
ver and solar geometry, i.e., flight altitude, heading, ground elevation, view and solar zenith and azimuth
angles. Therefore a large number of MODTRAN calls are required to process a single satellite or airborne scene.
In software such as 1spas [14] and aTcor [15], these computations are usually performed off-line, and stored in
LUTS prior to actual atmospheric correction of a scene to enable reasonable operational hyperspectral data
processing times. The use of LUTS support the processing of a large variety of unrelated scenes in a much
shorter amount of time than would be needed for direct computation.

In the case of ATcoRr, researchers from multiple institutions began to collaborate, in an informal way, on
extending functionality into novel special-purpose areas, ranging from the haze removal of low-spectral,
high-spatial IKONOS imagery to the processing of hyperspectral, wide field-of-view (Fov) imagery as obtained
from airborne (as opposed to space-bourne) instruments. This increased collaboration also increased the
desire for higher turnaround on LUT generation and, in turn, created the opportunity to pool the collaborators
computing resources, in an informal way, to speed up LUT generation.

In the LuT generation usage of MODTRAN, individual executions are independent of each other and input
data parameters can be pre-computed ahead of time, leading to a workload that is “embarrassingly parallel”
—1.e. there is no particular effort needed to segment the problem into a large number of parallel tasks. It is a
common pattern in the employment of parallel computing for embarrassingly parallel problems to run multi-
ple instances of a particular program over varying input parameters within a given problem space. This usage
is explored here in both grid and cluster processing environments.

2. Method

The stated goals of this study include: the parallel execution of multiple instances of opaque third-party
software, the consistency of numeric results in light of a heterogeneous compute environment, the ability to
make use of otherwise idle computing resources available to researchers located at multiple institutions,
and acceptable total turnaround time. These goals in addition to the parallel decomposition strategy are
addressed individually.

2.1. High-level granularity of MODTRAN processing

It is tempting to consider making changes directly to the MODTRAN code itself, since only a minor number of
input parameters are to be changed between executions. It is likely that common initialization code need be
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run only once and could thereafter be shared among multiple calls to only the subroutines affected by the
changed parameter. However, in a multi-decade project like MODTRAN, the cost of software maintenance
becomes a dominating factor to be considered in the development of any derivative solution. As mentioned
in Section 1, this invasive approach was once taken [10], resulting in presumably positive short-term benefits,
but of more questionable benefit in the long run, due to the changes not being merged into the official code. In
this case, it can become infeasible to merge such changes after even a single follow-on release, especially when
code restructuring is performed. Even the reformatting of comments, as occurred between two releases of the
MODTRAN four series on its approximately 80,000 lines of code, can make externally tracked sets of changes
very difficult to re-apply.

Therefore, the less invasive approach of treating “standard” MoDTRAN as a “black box” and achieving par-
allelism at this higher-level of granularity seems attractive — at least when large numbers of independent runs
are expected. As mentioned in [6], there still exist complex usages of MODTRAN (e.g. high resolution at-sensor
simulations with both pisorT and correlated-k features enabled), which lead to run times measured in hours
for a single execution. This mode of operation could still benefit from the single-run parallelism described
above in [10]. However, typical executions such as those used for the ATcor LUT each require less than a minute
on current hardware, making a single-execution parallel version less important than it once was.

2.2. Parallel decomposition

The parameter space of the ATcor LUT is chosen to adequately cover the problem domain at enough reso-
lution such that interpolation of values between entry samples introduces limited error as compared with
directly computed results. The six parameters that are varied are altitude, ranging from 1000 to 99,000 m;
water vapour, from 0.4 to 2.9 g/cmz; four built-in MODTRAN aerosol models, from rural to desert; ground ele-
vation, from 0 to 2.5 km; solar zenith angles, from 0° to 70°; and visibility, from 5 to 120 km. These param-
eters are computed using 45,056 executions of MODTRAN — each performing six runs. The large number of data
points is required to cover the wide range of geometry and weather conditions with a narrow grid enabling a
linear interpolation in 6D space. This first-order interpolation is similar to the well-known bilinear interpola-
tion in 2D, but neglects the mixed multilinear terms.

ATCOR’s sequential Interactive Data Language (1pL) [16] code for generating the LUT consists of a single
thread of execution that uses nested loops over the LuT dimensions to generate an input file, execute MoD-
TRAN, parse the results and merge them into a data compressed binary data structure. Due to task indepen-
dence, modifications for parallelizing this work involved only minor coding changes (see individual boxes
in Fig. 1) to split the single thread of execution into two separate passes — one for input file generation and
one for output merging. The resulting two pass process is broken into five stages described below and sum-
marized in Fig. 1:

1. Generate inputs The original sequential code is run in two passes: a generation pass and a merging pass.
This is done simply by guarding blocks of code with ““if” statements. Additionally, a small
amount of driver code was written to automatically permute all cases that were previously
input from a graphical user interface.

grid

http://server?cmd=run
530 lines of Tcl code

idl -rt=atlut jobs_pack jobs_unpack MERGING=1 idl -rt=atlut
00:01:36 00:09:45 00:16:16 04:0%00
+~50 lines of IDL diffs 18 lines of Tcl code 60 lines of Tcl code +~30 lines of IDL diffs
cluster
gsub modtran_job
135 lines of MPI/C code
1. Generate Inputs 2. Pack Jobs 3. Run Jobs 4. Unpack Jobs 5. Merge results

Fig. 1. Stages of processing.
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2. Pack jobs A small script is used to bundle the generated input files into a collection of jobs organized
for grid/cluster processing in a way that allows the data to be later re-arranged back to its
original organization.

3. Run jobs The jobs are run in parallel either on a Message Passing Interface (MPI)-based [17] cluster
or on the grid.
4. Unpack jobs A script is used to perform the re-arrangement as described in step 2 in preparation for the
merging phase of the original sequential program.
5. Merge results 1In the 2nd pass, the original sequential code is re-run with a switch enabling the alternate
(merging) blocks of code not taken during the step 1. A minor modification was also
added to check for platform-related numerical problems discussed above.

2.3. Numeric consistency evaluation

Scientific programs such as MODTRAN are susceptible at many levels to numerical issues resulting from float-
ing point calculations [18] and their inherent complexity [19]. The additional problems introduced due to het-
erogeneous computing environments have also been well-reported [20]. These include, but are not limited to,
differences in: floating-point hardware parameters — which can influence results even in light of full IEEE-754
[21] compliance; operating system, compiler and language runtime library interfaces, which have the potential
both to degrade results by masking exceptions or neglecting to save/restore parameters across calls, or to
improve results by working around hardware problems in software; issues with application algorithmic integ-
rity, such as the absence of proper scaling to avoid harmful underflow or overflow conditions; and finally, the
communication of floating-point values. At least on the latter point, MODTRAN produces its results as tables of
floating point numbers in ASCII format — thereby reducing byte-ordering and binary floating-point represen-
tation issues that might arise as data pass through multiple systems.

The apparent effect of some of the aforementioned issues were encountered in the first test run even on the
homogeneous cluster — in the case corresponding to input parameters altitude 2000 m, 0.4 g/cm?® water vapour,
urban aerosol model, visibility 120 km, solar zenith angle 30° and ground elevation 1900 m. The computed
results produced sporadic physically meaningless negative values for solar scattering and radiances. After this
particular case was cross-checked on other hardware architectures without problem, it was decided to exper-
iment with all five different compiler combinations (GNU’s g77 3.3.4 and g77 3.4.4 [22], the Portland Group’s
pef77 5.2-4 [23], and Intel’s ifort 8.0, and ifort 8.1 [24]) available to the authors on the target platform, using
only the default optimization (-0) configuration.

For this case, only MODTRAN executables compiled using the Intel compilers produced negative results, but
other differences were also seen as shown in Fig. 2.

Since no investigation was made into whether the problem is due to a compiler/run-time error or a MoD-
TRAN coding error, it was decided to universally use the GNU Fortran compiler, since it produced usable results
over all cases on the cluster platform and was assumed to produce the most consistent results across the het-
erogeneous grid platforms — even though GNu Fortran generated code was up to 15% slower than executables
produced by other compilers.

Due to this experience, it was furthermore decided to make the extra effort to roughly quantify numerical
consistency across the multiple platforms. Therefore all cases were eventually computed on all platforms.
Since it is not known which one provides “true” results, relative deviations [25] for each of the 45,056 cases
are computed across the four platforms.

2.4. Runtime performance evaluation

Although runtime performance is not the highest priority of this study, careful analysis of the results can
still be constructive. Therefore, in order to support comparison of runtime execution, the entire ATCOR LUT as
computed from 45,056 calls to MODTRAN 4 Version 3 Revision 1 was generated multiple times using both a
homogeneous cluster and a heterogeneous grid, varying the number of CPUs in powers of two up to 64.
The Linux-based Matterhorn cluster [26] consists of 522 AMD Opteron 244 (1.8 MHz) CPUs connected with
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Fig. 2. Numerics problems with case 4332 of 45,056: circles/error bars show where any version differs 0.1% from mean of MODTRAN results
produced from five common Fortran compiler/version combinations on an AMD Opteron. Note the negative values in Solar Scattering
and Total Radiance (produced by two versions of a compiler from a single vendor).

100 Mbit Ethernet or Myrinet. The grid was composed of the personal workstations of the authors and their
colleagues and the public Internet was used for network transport. A total of 99 CPU grid resources were
available to the authors, including Intel x86-compatible Linux nodes, AMD 64-based Linux nodes, Apple
G5-based MacOSX nodes, and Sparc-based Solaris nodes. The slowest grid CPU (a Sun SPARCstation-5)
runs MODTRAN 72.4 times slower (20 min, 30 s versus 17s) than the fastest grid CPU (an AMD Athlon
64 3500+) when running a particular single case (see Fig. 4).

2.5. Grid versus cluster

The clearest choice for new implementations of embarrassingly parallel problems intended for execution on
a commodity cluster is the use of the mp1 (Message Passing Interface) programming library [17] due to its
ubiquity.

In contrast, for new grid implementations of embarrassingly parallel problems, there are several possibil-
ities with varying features and trade-offs, but no clear choice for all cases has yet emerged. Some environments
focus on the appeal of the client end-user experience ([27], via Folding@Home and SETI@Home), others
focus on integration into a fully global network [28]. Perhaps the most well-known platform for the general
scientific community is Condor [29]. Because of this, Condor was the initial selection for representing a typical
grid implementation for this work.
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2.6. Condor versus low fat grid

Since the simple batched queuing of multiple executions of a single program with varying input parameters
is a common use case, Condor covers this explicitly in its users manual, with examples using the initialdir
and queue parameters. However, after initial Condor installation, setup, and tests were performed, the
authors wished to collectively add all spare machines to which they had access to a common processing pool.
This is where the first problem with Condor was encountered — that it does not directly support pooling pro-
cessors across firewalls. After discovering only complicated workarounds [30], which still did not solve the
problem that none of our potential servers allowed incoming connections on non-HTTP ports, and all of
our potential compute nodes only allowed outgoing connections on the HTTP port, our query on the Con-
dor-users mailing list confirmed that the only potential solutions involved complex tunnelling over ssh and/
or requiring several intermediary Condor Generic Connection Broker (Gc—) nodes.

Additionally, a second problem with Condor was encountered. When tests were performed on a subset of
the problem, overall run-time results were worse than expected. Investigation revealed that Condor does not
hide that it is designed for high-throughput but not low-latency. For example, there is a hard-coded (not end-
user configurable) pause between each job invocation, which in our case represents a non-trivial percentage of
the run time of a single MODTRAN execution on our fastest processors. Although there exists a third-party
extension to Condor [31] which aims to improve this, the authors determined that a simple HTTP-based [32]
grid could solve both problems that were encountered. When such a simple tool could not be found, we imple-
mented our own.

The initial prototype, ghack [33], consists of three short standalone programs (<500 total source lines of
code (SLOC)) capable of enabling geographically disperse groups, with only web browsing privileges and
access to a single commodity ISP account, to pool their machines toward working on collective problems.
The two primary design goals were ease-of-use (e.g. non-professional programmers) and ease-of-deployment
(e.g. aside from write access to a CGI-script capable directory on a web server, no system administrator sup-
port, elevated system privileges, or firewall configuration is necessary.) A zip archive containing a collection of
per-job directories of input files is HTTP file-uploaded to an Internet accessible web server from which worker
nodes (possibly at different institutions) voluntarily request jobs when they are idle. The worker nodes use the
same protocols as web-based email programs to download input files and, after processing, upload results.
End-users can visit a simple status page to monitor operation. This software enables volunteers to informally
collaborate in an ad-hoc resource-sharing grid that can be realized on the order of hours rather than the more
typical weeks or months required when more formal coordination is involved.

Since performance was not a primary objective for our HTTP-based tool, it was surprising to observe that
in a test within a single institution (the only possibility for standard Condor) involving 1/16th of the data set, a
grid of 16 compute nodes ran in half the time needed for Condor.

This success of the initial prototype prompted its re-implementation reduced to two standalone programs
and the use of the Representational State Transfer (REST) [34] web service architecture, for an even simpler-
to-deploy, more flexible solution known as the low fat grid project [35,36].

2.7. Scheduling

The scheduling of nearly identical jobs on a homogeneous cluster is not a difficult problem and initially a
simple algorithm (shown in Fig. 3a) was chosen to evenly distribute jobs among all processors.

Scheduling nearly identical jobs for a heterogeneous grid is not as trivial. Not only do times vary due to
CPU capacity but also due to disk and network latency and bandwidth, especially when using HTTP (or HTTPS
when security is desired or required) over the public Internet.

For the grid, a simple scheduling algorithm was chosen whereby the nodes themselves request jobs from the
job server. This automatically distributes more jobs to faster nodes. The resulting initial program flow for both
cases can be seen in Fig. 3.

After the first cluster run, it was noted that the homogeneous compute nodes finished at unexpectedly dif-
ferent times — with the “fastest” node finishing several hours earlier than the “slowest” — amounting to about
10% of the total execution time in this case. After searching for and not finding any coding errors, it was
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mpi_runjobs.c
MPI_lnit(...)

n = atoi(argv[1])
MPI_Comm_rank(..., &rank)
MPI_Comm_size(... &size)
niter = n/ size

MPI_Scatter(...)
for(i=0; i<niter; i++) {
jobn = (i * size) + rank;
if (jobn < n) {
sprintf(command, "...%d...
ret = system(command)
MPI_File_write(...,tmp_results,...)

}
}
MPI_Gather(...)

", jobn+1);

MPI_Finalize(...)

slave

httpd job_scheduler
- 2cmd=
GET htp://apexgrid?cmd=get _ get_job
jobid 0001 /path/to/jobs/0001
~jobs/0001/index.html
GET http:/apexgrid/jobs/0001/tape5
~jobs/0001/tapes
GET http://apexgrid/jobs/0001/commands
~jobs/0001/commands

(Run commands)

POST http://apexgrid?cmd=results&jobid=0001&nfiles=3
(stdout)
(stderr)
(tape7)

job_done 0001 slave_host

(update statistics)

(a) Cluster (initial)

(b) Grid

Fig. 3. Cluster versus Grid program flow.

decided to simply use the same scheduling algorithm as performed with the low fat grid. The cluster nodes
request jobs when they are ready, leading to efficient self-adjusting job distribution.

In order to obtain a rough estimation of total run time on the heterogeneous grid, a single run of MODTRAN
was timed on all available grid hosts and a speedup estimate was made by cumulatively adding nodes ranked
from the fastest to the slowest. The results are shown in Fig. 4. For this problem and set of grid nodes, it was
estimated that in the best case, using only 15 grid nodes would be only two times slower than using all nodes.
Using more of the slow but numerous additionally available CPUs produce ever-dwindling returns.

100. T T T T T ] I T ] 100
. | =—0— Estimated cumulative time relative to using all CPUsl .....................................
(slowest =.72.4 x fastest.CPU)
H 50

% I
[}
@
g
2
[
=
£
o
©
£
5 H 10
e}
L
[}
f=) .
E 5 R H 5
%) 0
s e N
g o
> o
R TR by
©
[} Q.
= 3, I

1 [T et LALLLL LTI T

0 10 20 30 40 50 60 70 80 90 100

Spare hosts available for ad—hoc grid (99 total)

Fig. 4. Heterogeneous grid runtime estimation — relative CPU speeds of the 99 hosts are plotted along with an estimation of total runtime
for a grid composed of increasingly more CPUs. It is estimated that 15 CPUs would run only 2 times slower than using all 99.
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3. Results

Numerical differences of the GNu-compiled MmoDTRAN-generated results on the four different platforms
are characterized in Fig. 5 by mean relative deviations [25] of a per-case “profile” across all 45,056 cases.
The ‘““profile” for a case, which is only used for comparison of that case with the other platforms, is
defined as the mean of the subset of only those component radiance values that are eventually recorded
in the resulting LuT. All cases which produced bad i.e., negative, results (see Section 2.3) are marked by
vertical lines.

Total running times for the full computation are summarized in Table 1.

For characterizing per-node statistics, the mean and standard deviation of all MODTRAN run times (as mea-
sured from the node’s point of view) were computed for each node that was used in any of the cluster or grid
runs. These are shown in Fig. 6. Cluster nodes are named with the pattern nodeNNNN — the others are grid
nodes.

Additionally, for analyzing per-case statistics, minimum, mean and maximum run times (measured from
the node’s point of view) were computed for each of the 45,056 MoDTRAN cases. In Fig. 7, a quadratic fit
of both the grid node and cluster node mean times are plotted, as well as the particular minimum, mean,
and maximum times of the .05% most anomalous cases. A quadratic fit was deemed appropriate enough
to show the trend, while reducing plot clutter enough to allow displaying of anomalous cases. Showing
more anomalous cases would be difficult to read in the plot and would not reveal additional relevant
information.

The speedup and efficiency of the parallel portion of the code (e.g. stage 3 described in Fig. 1) is plotted in
Fig. 8 according to a standard algorithm [37].

mean
rel. dev.

x 10
x 107 Intel x86

mean
rel. dev.

mean
rel. dev.

c =
g3
Es
0.5 1 1.5 2 25 3 3.5 4 45
4
x 10

Fig. 5. Mean relative deviation [25] of the per-case “profile” for each of the four platforms across all 45,056 MODTRAN executions — vertical
lines denote cases with bad (e.g. negative) values.
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(a) Sequential stages

Stage # Time Description

1 0.03 Generate inputs
2 0.16 Pack jobs

3 see (b) Run jobs

4 0.27 Unpack jobs
5 4.12 Merge results
(b) Parallel stage (stage 3)

# CPUs Grid Cluster

2 113.87 125.09%

4 58.70 59.29%

8 36.64 31.26

16 21.53 16.19

32 15.33 7.68

64 12.95 3.93

# This was unfortunately not possible for the two and four CPU cluster runs, which is why the timing results for these cases are simulated
by concatenating the results of the entire job split into eight equally sized partitions.

250 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T I T T I T T T T TTTTToTT

Mean/stdev of all jobs run on particular node|

200

150

Time (s)

100

50

4. Discussion

Fig. 6. Mean and standard deviation of run times per-node.

4.1. High-level granularity of MODTRAN

Although it cannot be known what performance effect would have resulted from applying parallel-
ization at a lower level of granularity i.e., within MODTRAN itself, according to Table 1, a sufficiently
fast turnaround time is clearly achievable using either of the aforementioned grid or cluster approaches
on current hardware. With continuous hardware improvements, this situation is only expected to

improve.
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Fig. 7. Quadratic fit of node speeds (s) per job and extreme anomalies.

4.2. Numeric consistency evaluation

The most important information depicted in Fig. 5 is that other than the large number of cases where the
Mac G5 produces bad (negative) values, the numerical results do not differ unreasonably from one another.
The single 32-bit platform (Intel x86 compatible) was the only platform to produce no negative results, yet its
results deviated the most from the other (64-bit) platforms, which showed consistent agreement. It is not
known why the Mac G5 resulted in so many bad cases, but an attempt to use a more recent version of the
compiler (GNU Fortran version 4.0) resulted in a compiler crash when attempting to build MODTRAN.

The most comforting outcome is that the AMD 64 and SPARC results are almost identical. Even the single
“bad” case (7386 — corresponding to altitude 2000 m, 2.9 g/cm? water vapour, maritime aerosol model, visi-
bility 15 km, solar zenith angle 60° and ground elevation 1500 m) for both platforms shows agreement where
the AMD 64 produces only one negative value (at wavenumber 17,115 cm™') and the SPARC produced three
(the same as the AMD 64 case but additionally at neighbouring wavenumbers 17,110 cm ' and 17,130 cm™}).
Yet, for unknown reasons, neither the Intel 86 nor the Mac G5 produced bad values for this case.

4.3. The role of middleware

Interesting questions arise regarding the role of distributed and/or parallel computing middleware for
implementing embarrassingly parallel problems. A large amount of services are offered, including: support
for problem decomposition, problem characterization analysis, fine-grained monitoring, ease of deployment,
ability to access large pools of resources, maximum configurability, exotic scheduling/rescheduling possibili-
ties, high-throughput, low-latency, etc.

In this study, which we consider to be a medium-sized problem, we were primarily interested in two orthog-
onal questions: how does one achieve the fastest overall turnaround and how does one get the task imple-
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Fig. 8. Speedup/Efficiency of parallel MODTRAN jobs on cluster and grid.

mented with the least amount of effort? To artificially allow for the comparison between cluster and grid, we
performed our own problem decomposition and merging of jobs and expected to only make use of queuing/
scheduling/execution functionality. However, this effort would not have been much different if we needed to
implement only one of the two solutions.

The answers we obtained to these two questions were surprising. Although Table 1 shows total run times
which imply clearly higher potential turnaround on the cluster, it does not show effective turnaround times. In
the cluster case, our centralized computing center’s job queuing system is configured in a way that penalizes
two and four CPU cases due to expected run time requiring more than the 48-h short-job queue time cut-off.
The 32 and 64 cpu cases are penalized due to needing so many CPUs simultaneously. During this study, such
jobs sat in the waiting queue for up to two months on multiple occasions before being killed due to cluster
maintenance or system failure. In practice, end-users learn to get maximum job throughput by manually par-
titioning problems into single CPU jobs running just under the 48-h priority queue cut-off time and manually
scheduling these themselves in ways that avoid job quantity penalties imposed by the queuing system. This
causes the effect described above of starving jobs that were not so optimized to the queuing/scheduling mid-
dleware. Although such optimizations could potentially have been performed because our problem is embar-
rassingly parallel, for this study it was desired to accurately characterize cluster operation at specific CPU
sizes, and therefore these techniques were avoided in running ATCOR LUT jobs. Over the course of a year,
two cluster maintenance days were encountered that serendipitously allowed the author to be among the first
to submit new jobs after a cluster reboot, allowing the 32 and 64 CPU jobs to finally run.

In contrast, none of the low fat grid cases ever required waiting longer than the upcoming weekend, which
was done as a courtesy to the workstation owners.

Therefore, since cluster utilization was high and the cluster middleware was centrally tuned for a workload
different from the natural workload of our problem, the fastest overall turnaround for ATCOR LUT generation
was achieved using the grid.
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Additionally, not including implementing the grid middleware ourselves in <500 source lines of
code (SLOC), the least amount of realization effort was needed for the grid since implementation
merely involved pre-generating varying input parameters to be placed one per directory in a zip
archive, and convincing colleagues to run a small standalone client program on otherwise idle
workstations.

4.4. Runtime performance evaluation

The speedup/efficiency plot in Fig. 8 for the parallel-only portion of the cluster runs is as expected for an
“embarrassingly parallel” task. The plot of the grid result is more interesting, showing that speedup clearly
diverges from ideal starting with 8 CPUs, and that in this setup, there is no good reason to use 32 CPUs over
16 — which largely validates the grid estimation predicted in Fig. 4.

The total running times in Table 1 show that for small numbers of CPUs (up to four), the grid can
outperform the cluster. All of the grid CPUs used in these runs were newer than the CPUs in the homo-
geneous cluster, so this merely reflects Moore’s law [38], which implies that commodity computational
power doubles every 18 months. The difference between the two systems starts to clearly diverge after
eight nodes. This is mostly due to there being fewer “new” CPUs available for a grid but it is also
due to the increasing affect of the inefficiency of HTTP over the public Internet as the grid’s network
transfer protocol. In an after-the-fact investigation of possibilities for minimizing the effects of this inef-
ficiency, a few experimental modifications were explored. First, a test run was performed using a 16
(homogeneous) node grid against a server running each of four different freely available web server pro-
grams in their standard configurations. On a subset of the parallel-only portion of the computation, this
showed average multiple-trial run times ranging from 3.7 to 4.5 h, with the ubiquitous Apache software
performing best. It was observed that at least one of the competing offerings did not support concurrent
CGI processes in its standard configuration, which could explain the larger than expected spread.
Another possibility for reducing the inefficiency of HTTP over the public Internet was investigated through
the use of data compression. Again, a subset of only the parallel portion of the computation was run on
a 16 homogeneous node grid comparing the difference between applying data compression on the output
data before transferring the results over the network. In this case, running time was reduced from the
3.7-h average to an average of 1.3h, where the per-job output data size was reduced from about
1 MB to about 300KB. Even with only 16 nodes, it appears that reducing the data bandwidth require-
ment also reduces strains due to concurrency on the server. In our case, input data is small compared to
output data. However if the opposite were true, data compression could also be applied to the input.
Likewise, if input were to consist of several small files, it is expected that improvement could be seen
by using pipelined HTTP download [39] from the server to the grid nodes. In short, there is often potential
for reducing the effect of inefficiencies inherent in using HTTP over the public Internet as a grid network
transfer protocol.

4.5. Per-node statistics

There are three noteworthy features in the per-node graph (Fig. 6). First, the single cluster node, named
node0255, seems to clearly be faster than the others. It has been confirmed by the cluster administrator that
this node in fact contains faster CPUs and could be one reason why the original scheduling algorithm
described in Section 2.7 was anomalous. Second, there is extreme variation shown by the grid node named
virgo. A closer look at the data revealed the pattern that the slow run times occurred at clusters in time.
After consulting the owner of the workstation it was revealed that he also often ran long-running jobs at night
and on the weekends, implying that the variation was due to CPU contingency between multiple simultaneous
CPU-bound processes. The final striking feature is that the slower grid nodes were not only clearly slower, but
often had much larger variation. The fact that they are slower is due to their being SPARC-based CPUs as
opposed to the others based on commodity PC hardware. The larger variation is explained in that these
are nodes at a remote institution and the inefficiency of the public Internet network transport contributed
more to their total run time.
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4.6. Per job statistics

The quadratic fit of the mean running times per-case reveals two items of information. First, there is a con-
sistent per job difference between the mean grid and the mean cluster fitting across the entire workload, as
expected. Second, and unexpectedly, the per-case running times consistently increase as the case number
increases. Examination revealed that the two slowest changing of the six varying MODTRAN parameters are
flight altitude and amount of water vapour. It then makes sense that calculations such as multiple scattering
take more computation at higher altitudes when there are more atmospheric layers to be considered.

When examining the extreme anomalies in Fig. 7, it is first noticeable that the grid variations are so much
larger than the cluster variations. This is certainly expected due to the cluster being a closed non-interactive
system with dedicated network. In fact, more interesting is that such large variations are possible in a closed-
network cluster. This also probably contributed to the anomalous results of the original simple scheduling
algorithm described in Section 2.7. The biggest variation was due to a Network File System (NFS) server
reboot during the running of a job and the smaller variations are also due to NFS contingency during initial
input and final output of data files.

The grid anomalies show the extreme effects of intermittent network partitioning on the public Internet —
the largest grouping of effects appearing in the early morning as people begin to arrive at work.

4.7. Scalability

Assuming that all compute nodes are homogeneous, total job time is dominated by processing time (as
opposed to I/O time), all jobs involve roughly the same amount of computation, and that the non-parallel
portion of the problem (merging results) is relatively constant and fixed, then scalability is effectively linear
since this is an embarrassingly parallel problem.

These assumptions are essentially true in the cluster case but certainly not with the grid, where compute
nodes are heterogeneous, total time for any one job might be dominated by I/O for nodes that are far-away
or behind slow-haul links. Because of the variability in bandwidth and latency of the internet transport and the
differences in profile of fast/slow machines available at any one time for computation, it is impossible to give
general scalability results for the grid case. However, for the grid case performed in this study, the level of
scalability can be seen in Figs. 4 and 8 and Table 1.

5. Conclusions

The application of grid and cluster parallelization in executing thousands of runs of third party software
with varying input parameters has been investigated, specifically for the generation of ATCorR’s LuT, widely-
used in earth observation applications. The importance of validating the numerical consistency of the results
for numerically intensive scientific software such as MODTRAN, especially in light of heterogeneous computing
environments, has been shown. In this case study, the potential was also shown for an ad-hoc, voluntary grid
to provide faster overall-turnaround time than a better-equipped but highly-utilized and inconveniently-con-
figured cluster.

It has been shown that for producing the MODTRAN based ATCOR LUT, both grid and cluster implementations
can be used to reduce runtime from ten days on a single cpu, down to under two days using modest computing
resources. When measuring only compute time (i.e. not wall-clock time) cluster-based runs sized above the final
merging step runtime threshold, scaled linearly. In a heterogeneous grid using HTTP transport over the public
Internet, run-time scalability is far from linear, however the detrimental additional I/O cost can be limited by
proper use of web server software and the use of data compression on large input and/or output files.

High quality, free grid and cluster middleware is available, but for a particular set of uses (e.g. implemen-
tation by non-programmers, no access to privileged servers or services, execution across firewalls, etc.) the sim-
ple low fat grid has advantages over the well-known Condor middleware.

When both grid and cluster implementations solve a given embarrassingly parallel problem relatively well,
it is worthwhile considering the non-runtime advantages and disadvantages that the two alternatives provide.
Clusters allow for higher and more predictable I/O throughput, while grid environments may provide access
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to (fewer instances of) more recent and therefore higher performing processors. Cluster environments typically
offer high quality software compilers and tools affecting numeric accuracy and/or aid in development time, but
grid environments, composed of the resources of a circle of collaborative researchers may provide more imme-
diate turnaround of small-to-medium-sized jobs due to lack of resource contingency. Clusters are typically
homogeneous which can be an important characteristic for some problems, but for others the variation in plat-
forms usually inherent in a grid can be a benefit, such as in the cross-validation of numeric results.

Also important is the correct granularity of problem decomposition. In this case study, critical third-party
core software was treated as a “black box” — even though source code was available. Software evolves over
time and it is likely that the cost of maintaining and re-applying locally produced code changes is too high,
not because of the cost of initial development but either because the core software might change its structure
too much between releases, or because the developers of the local changes are no longer available to re-apply
them to a later release.

For prolific software such as the Fortran-based MopTRAN modeler, which may remain in wide use over
spans of decades, longevity of parallel/distributed implementation is improved by allowing such decoupled
control over job granularity. If the absolute performance of the core software stays roughly the same, the
number of jobs that can be run could possibly be doubled on the same number of processors merely by
upgrading the hardware. By building this insight into the software driving the “black box” executions, one
can increase the useful longevity of the overall system.

Another possible dimension of scalability lies in the number of results generated, which in this case was
optimized to fill the capacity of a DvD. As DVD capacities increase, higher numbers of samples can be generated
to provide less average error due to inter-sample interpolation. Furthermore, additional dimensions (such as
sensor viewing angle, in our case) could be added to the parameter space, in order to enable novel applications.
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