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ABSTRACT: 
 
An empirical (target-) BRDF normalization method has been implemented for hyperspectral data 
processing, following the approach of Kennedy, published in 1997. Correction results of this 
method highly depend on the successful application of an appropriate spectral pre-classification 
which necessarily must be insensitive to reflectance anisotropy.  
A standard classification output (as of ATCOR-4) is first evaluated for its suitability concerning 
anisotropy normalization. A hierarchical BRDF selection scheme is then set up, covering the most 
prominent target classes in the image. A classification algorithm is then evaluated on the basis of a 
standard spectral angle mapper (SAM) approach with the RSL’s spectral database SPECCHIO 
attached for reference spectra evaluation. Results show that the ATCOR-4 pre-classification output 
is highly sensitive to the reflectance anisotropy and therewith not suited for pre-classification. The 
SAM pre-classification is still under investigation, but first tests using reference spectra out of the 
reflectance data itself showed problems due to the high robustness against brightness differences 
since a gradient must be estimated from targets of comparable brightness. 
 
 

1. INTRODUCTION 
 

Anisotropic reflectance behaviour is typical 
for most natural surfaces. Assuming a given 
fixed illumination direction and homogeneous 
target, the reflected energy measurable by a 
sensor changes with varying sensor angular 
position. Likewise, the received energy for a 
sensor at fixed position depends on the 
illumination direction. The target- and 
wavelength-specific characteristics of this 
physical phenomenon may be expressed by 
the conceptual quantity of the bi-directional 
reflectance distribution function (BRDF). 
Derived quantities like the bi-directional 
reflectance factor (BRF) are commonly used 
to describe the reflectance anisotropy, which 
in turn enables the estimation of e.g. structural 
variables of the specific target the sensor 
looked at. 

However, often reflectance anisotropy is 
considered as an interfering effect in airborne 
or space borne imaging spectrometer data. 
Changes in across-track radiometry, which 
are caused by the sensor look angle variation, 
lead to misclassification or false estimation of 
surface properties. With increasing accuracy 
of methods for atmospheric correction, the 
relative errors caused by reflectance 
anisotropy become even more severe. 
A number of methods exist to overcome this 
problem. Purely empirical, scene based 
methods may serve as fast, automated 
correction procedure of target induced 
reflectance anisotropy. Due to the strong 
coherence between target properties and 
reflectance anisotropy, empirical approaches 
like the band-specific quadratic curve fitting 



method, which was first used by Leckie 
(Leckie 1987) and evaluated by Kennedy 
(Kennedy et al 1997) rely on a proper spectral 
pre-classification. This classification 
procedure must necessarily be highly 
insensitive to the reflectance anisotropy 
occurring in the data; its class definition must 
be designed in a way that it can discern 
reflectance differences caused by cross-track 
reflectance anisotropy and those caused by 
within-class variation that also would be 
visible under constant illumination and sensor 
angles. The goal of the present study is to 
investigate the potential of spectral 

classification algorithms to provide a set of 
spectral classes, which have to be 
distinguished in imaging spectroscopy data in 
order to perform an empirical normalisation 
of reflectance anisotropy. A standard spectral 
classification procedure (SPECL algorithm) is 
used first as a pre-classification and its 
performance is evaluated with a HyMap 
dataset taken in 2004 over the “Vordemwald” 
test site in northern Switzerland. In a second 
step, the Spectral Angle Mapper (SAM) 
algorithm is used with reference spectra 
extracted from the image data. 

 
 

2. METHODS

Three overlapping datasets have been 
acquired at the “Vordemwald” test site in 
northern Switzerland, two of which are taken 
in parallel in north-south direction with an 
overlap of a few hundred meters (VDW1, left 
and VDW2, right). One data set has been 
recorded perpendicular, therewith scanning in 
the so-called sun principle plane. This dataset 
has not been taken into account for the current 
investigation.  
The HyMap Imaging Spectrometer is 
acquiring 512 pixels per scan line with 126 
spectral bands recorded simultaneously 
between 400 and 2500 nm, with a FOV of 
61.3°. The data were taken from an operating 
altitude of 2500m above ground; this results 
in a spatial resolution of 7.2 m in along-track 
and 6.0 m in across-track direction. All image 
data have been resampled during the 
parametric geometric correction process 
following PARGE (Schläpfer 2003) and 
(Schläpfer and Richter 2002) to an effective 
squared pixel size of 5x5 m. Atmospheric 
correction has been carried out using the 
ATCOR-4 software (Richter 2008) with a 
rural standard atmosphere. Remaining 
reflectance anisotropy in the data may then be 
attributed to the target specific directional 
reflectance behaviour exclusively. 
Topographic effects can be neglected due to 
the rather flat terrain. The SPECL 
classification algorithm as implemented in the  

  
 

Figure 1: Mosaicked HyMap data (R,G,B =  
HyMap Band 14,8,2), left; SPECL 

classification result (right). 



ATCOR-4 software package has been used to 
derive a spectral pre-classification of the data, 
using the software’s standard template 
spectra. 18 classes have been identified; 
however, only the dominating 3 vegetation 
classes have been taken into account for this 
study. Figure 1 shows the mosaicked HyMap 
data and the classification results. It is clearly 
visible, that the brightness gradient in the 
HyMap data results in a partial 
misclassification. The transition of the 
overlapping image strips is recognizable in 
the image data.  
Empirical, scene-based BRDF normalization 
has been carried out following the means of 
Kennedy (Kennedy, Cohen et al. 1997).  
Using the previously generated classification, 
a mean radiance by view angle calculation is 
performed, per spectral class and waveband, 
assuming that directional effects are zero 
when the view angle is zero. A quadratic 
model, which optimizes the residual error in a 
least-squares sense, is then fit to the data.  
After an offset correction of the fitted mean 
reflectance at nadir to the apparent 
reflectance at nadir, the coefficients are 
transformed into a correction factor per view 
angle (respective column number). 
This correction factor can be calculated and 
applied either in a multiplicative or additive 
manner. Due to the better performance that 

was evaluated in studies carried out by other 
authors (Schiefer, Hostert et al. 2006) only the 
multiplicative approach has been followed. 
 
 

 
 

Figure 2: Workflow of the quadratic 
curve fitting process. 

  
3. RESULTS 

 
3.1 Results for SPECL pre-classification 
 
Normalization of reflectance anisotropy is 
essential in order to enable accurate, 
quantitative data analysis, like the estimation 
of vegetation parameters (e.g. bio-chemicals 
content of tree species). The evaluation of the 
normalization results therefore focuses on 
green vegetation, which covers more than 
70% of the data set under investigation. In the 
visual wavelength region (compare with Fig. 
1) a severe brightness gradient can be 

observed primarily in forested areas. Figures 
3, 4, 5 and 6 show the gradient that is 
observable in the data before and after 
correction, for the VDW 1 and VDW2 scenes, 
respectively. While for VDW1 the gradient is 
reduced by a noticeable amount, in the 
VDW2 case the correction is absolutely 
inappropriate to the observed gradient. The 
reason for this is the large within-class 
variation, especially for the “dark vegetation” 
class.  



 
 

Figure 3: Brightness gradient in the VDW1 
subset before correction. 

 

 
 

Figure 4: Remaining gradient in the VDW1 
subset after correction. 

 

 
 

Figure 5: Brightness gradient in the VDW2 
subset before correction. 

 
 

Figure 6: Remaining gradient in the VDW2 
subset after correction. 

 
Figure 7 shows the SPECL classification 
results for the major vegetation classes (dark, 
average and bright vegetation), for the VDW1 
scene. While the “dark vegetation” class 
covers mainly forest, and “bright vegetation” 
is related to pasture areas or crops, the 
“average vegetation” class seems to cover 
both of them. All of these classes show the 
typical reflectance curve for green vegetation, 
with varying total values in apparent surface 
reflectance, reaching from 25% (dark 
vegetation) up to 55% (bright vegetation) in 
the wavelength region around 1050 nm 
(HyMap band 42). 
Figures 8 and 9 compare the column-wise 
averaged apparent surface reflectance for the 
visible, for the VDW1 and VDW2 case, and 
the “dark forest” class. The observed across-
track changes in mean reflectance in the 
VDW2 dataset are similar for the other 
vegetation classes. There is no continuous 
decrease in reflectance from the left to the 
right. The reason for this is that the variance 
in apparent reflection caused by varying 
target properties is masked by the variation 
through reflectance anisotropy for a single 
target. This is not a surprising result. The 
investigated classification method is sensitive 
to reflectance anisotropy and therefore not 
suited as a pre-classification method for 
anisotropy correction.  
Figures 10 and 11 illustrate the derived 
correction factors for VDW1 and VDW2. 



 
Figure 7: SPECL classification result for the dominant vegetation classes (dark vegetation, left; 
average vegetation, middle; bright vegetation, right) demonstrated with a subset of the VDW1 

scene, and spectra assigned to the respective classes. 
 

 
Figure 8: Column-wise averaged reflectance 
for class “dark vegetation”, VDW1 scene. 

 

 
Figure 9: Column-wise averaged reflectance 
for class “dark vegetation”, VDW2 scene. 

 

 
Figure 10: Calculated correction factors for 

class “dark vegetation”, VDW1 scene. 
 

 
Figure 11: Calculated correction factors for 

class “dark vegetation”, VDW2 scene. 
 



3.2 Preliminary results for SAM pre-
classification 

 
A series of tests has been carried out for the 
“dark vegetation” case, using reference 
spectra derived from the real image data at 
various locations within forested areas, at 
nadir position. While the total illumination by 
definition does not play a role for the 
classification result, a key parameter seems to 
be the maximum allowed deviation from the 
reference angle. However, first preliminary 
results show that the advantages of the SAM 
(illumination insensitive classification) seem 
to become a drawback for the specific 
purpose of this application. The brightness 
gradient has to be estimated from a target 
class under the assumption that brightness 
differences are only caused by the reflectance 
anisotropy. The SAM algorithm is possibly 
too insensitive to distinguish between 
different target species that exhibit a very 
similar (vegetation) reflectance curve with 
only the illumination intensity being a 
discriminating factor. A combination of an 
illumination-sensitive classification method 
with the SAM might support the estimation of 
a class-wise brightness gradient. 
 
 

4. CONCLUSIONS 
 

A satisfactory target-BRDF normalization 
result for the case of (dark) vegetation could 
not be achieved so far. Both the SPECL 
algorithm and the SAM were not able to 
provide a spectral classification result that is 
both sensitive enough to the total illumination 
intensity (which is necessary for proper 
brightness gradient estimation) and 
insensitive to the within-class reflectance 
anisotropy.  
The potential of the SAM algorithm, 
however, has not yet been fully investigated. 
Better results are possibly attainable with a 
modified set of reference spectra, and the use 

of spectrometer measurements taken in the 
field could have a positive influence. 
In addition, the possibility of using SAM in 
combination with the SPECL algorithm will 
be a topic for further research. 
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